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We study the finite-length scaling of self-interacting partially directed self-avoiding walks utilizing
enumeration data up to a total length of 6000 steps. This facilitates the evaluation of the numerical tech-
niques available for calculating exponents at the 6 (critical) point and in the collapsed phase of walk-type
models. Another consequence is the conjecture of an alternative scaling theory for the collapsed region
of the phase diagram and the suggestion that this should be applicable to the wider range of undirected
problems including interacting self-avoiding walks. We provide a phenomenological picture of the phase
transition in terms of the condensation of droplets that allows us to understand the various length scales

involved in the problem.

PACS number(s): 05.50.+q, 05.70.Fh, 61.41.+¢

I. INTRODUCTION

Substantial progress has been made on the elucidation
of the properties of an isolated polymer chain [1] from
various lattice models in statistical mechanics. Mostly,
these have been based upon self-avoiding walks (SAW)
which have been studied on a variety of lattices and in
several dimensions. A canonical example is the interact-
ing SAW (ISAW) model on a regular lattice where attrac-
tive nearest-neighbor interactions introduce a thermal
field. Two-dimensional systems are often of interest from
a directly physical point of view and coupled with the re-
cent enthusiasm [2] for lattice models in two dimensions
it comes as no surprise to find a wealth of work on the
ISAW on two-dimensional lattices [3]. Many results
have been conjectured for this model though no exact
solution exists.

A closely related model, that of partially directed
walks with similar self-interactions (IPDSAW), has been
proposed as a viable alternative to shed some light on the
ISAW problem [4]. We have undertaken a thorough
study of this model and several results have already been
found including much exact information [5,6] (see also
the related work on this model with the addition of a
boundary [7-9]). The scaling of the properties of walk
systems with the length of the walk is the fundamental in-
formation required from these models and while much
can be inferred from analysis, it is difficult to compute
these properties directly. Moreover, it is interesting to
compare the finite-length estimates of quantities to the
exact values known in the thermodynamic limit. Here,
we shall describe a complete study of the scaling of the
system with walk length in an attempt to draw some wid-
er conclusions about interacting walk problems. In doing
so we shall not only provide a phenomenological picture
of the behavior of the model, but also expose generic
features of these problems as yet unrecognized. This
work has provided the impetus for two recent papers
[10,11].

Partially directed walks are self-avoiding walks that
have only steps in the positive x (horizontal) direction
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while having steps in both positive and negative vertical
directions. In Fig. 1 an allowed configuration is shown,
including a representation of which steps (representing
monomers) interact. The basic problem is that of
evaluating the canonical partition function, given by

0,(N= 3 ¢ (Da(T), (1

configurations

where w=exp(J /kpT); J being some positive coupling
constant. Here, c¢;(I) is the number of allowed
configurations of length L that have I interacting sets of
monomers. The thermodynamic limit is given by L — o
and hence the free energy per monomer is given by

.1
fo(D==kyT lim —InQy(T). 2)

A common procedure is to consider instead the general-
ized canonical ensemble and introduce a fugacity z for
the walk length. The generalized partition function, or
equivalently a generating function, is then found from
summing over walk lengths as

=3

G(z,o(T)=3 z'Q,(T) . (3)

L=0

FIG. 1. A typical partially directed walk with interactions
represented by grey bonds between nearest-neighbor steps.
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It is then not too difficult to show that the closest singu-
larity to the origin, z, say, of G(z,w) (considering z the
variable and @ as a parameter) is related directly to the
canonical free energy as

z,=exp[f(T)/kgT] . 4)

It is, however, not guaranteed a priori that all averages of
properties in one ensemble will tally with the other [12].

In the analytic work already presented [6] the discus-
sion has centered on the generating function G(z,w) and
its derivatives [including extensions to G(z,®)]. Thermo-
dynamically, the free energy contains a lone singularity,
or critical point at some finite temperature. The behavior
of the thermodynamic free energy f . (T), the internal en-
ergy u . (7T), and the specific heat ¢ (7T) as functions of
temperature are given in Fig. 2. This has been viewed as
analogous to a similar behavior in the ISAW problem
where the critical point is understood as a collapse transi-
tion. Aptly named, this transition signifies the abrupt
change of finite-length scaling of the average size of the
walks and is believed to be associated with the 6-point
transition in polymer systems. Hence the study of this
transition in the IPDSAW system is of some importance
for the understanding of the ISAW model.

As pointed out by Nordholm [12], the relationship be-
tween the two ensembles is clear at high temperatures
down to and including the critical point in these systems.
Therefore, analysis in the generalized ensemble can be
confidently translated to the canonical. However, at low
temperatures the situation is not well understood. Here
the generating function converges at its radius of conver-
gence and quantities such as the average length are finite.
It is clear then that taking the limit of going to the radius
of convergence is not always the same as the limit
L — . This breakdown of the connection between the
ensembles provides the stimulus for numerical techniques
to be employed. However, knowing how to solve for the
generating function allows much more to be achieved by
series analysis than for a completely unsolved problem.
We, of course, can also confirm that appropriate ex-
ponents are the same in both ensembles when required by

2.5
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FIG. 2. Plots of the thermodynamic limit free energy f ., (T),
internal energy u ., (7T, and specific heat ¢, (T) against the tem-
perature variable o calculated from a continued-fraction expan-
sion [6]. The specific heat is zero for o > w,.
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theory. In addition, even for the generating function
some effectively numerical work needs to be done to ex-
tract some exponents because of the nature of the solu-
tion as the functions involved are not well understood [6].

So the first benefits of this study are simply the quanti-
tative understanding of the low-temperature phase of this
system and the confirmation that the exact results do
hold at higher temperatures. The former of these has led
us in two directions.

First, the collapsed phase has not been well understood
for any walk problems. As a step towards a better under-
standing we will consolidate a scaling theory for the par-
tition function for T =T, introduced by Owczarek,
Prellberg, and Brak [10] and subsequently expanded to a
full scaling theory of the collapse transition [11]. This
scaling theory is partly based on a connection with the
droplet model of fluid condensation [13] and can be
viewed as a nontrivial example of a model displaying
some of the behavior of the fluid model while also having
additional features.

The scaling suggested in [10] has been discussed in oth-
er contexts such as fluid condensation [13], percolation
[14], and models of polymer melts [15-22]. The main
idea in each is the addition of a “‘surface” term in the free
energy. However, the dense polymer phase (finite con-
centration), which is the subject of that last set of papers,
sometimes displays the scaling form we have proposed
for the collapsed phase (single polymer in an infinite
volume) but this form arises from a different physical
reason. In the dense polymer models the “surface” term
is due to the lattice boundary (physically, the container)
while we claim that the fractal object that a single poly-
mer forms in the collapsed phase has its own intrinsic po-
lymer surface. We note that the existence of the ‘“‘sur-
face” term in the dense polymer model is dependent on
boundary conditions. We also mention that the dense po-
lymer phase is believed to be related to the low-
temperature phase of the critical O(n) model while the
collapse phase of isotropic polymers may be related to a
phase boundary in the tricritical O(n) model and so are a
priori unrelated. Hence the scaling form suggested in [10]
is indeed an interesting proposal for the collapsed poly-
mer phase.

The second benefit of looking more closely numerically
at this problem and especially at the collapsed phase is
the development of a phenomenological picture of the
transition which we have inferred from a detailed study
of the length scales involved. These length scales include
the end-to-end distances in the two directions (as this is a
directed problem). A physical “bubble” or droplet pic-
ture can be put forward as a heuristic explanation of the
behavior of the length scales. It is commonly assumed
that it does not matter what one chooses to measure, the
radius of gyration or the end-to-end distance, to find the
length scale of global importance. We show how this as-
sumption about length scales can fail at low tempera-
tures, at least in directed problems.

Another reason for undertaking this numerical work is
a comparison with other work on the ISAW problem.
Again this provides us with an opportunity to give some
insight into the procedures employed elsewhere. The
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analogous critical point in the ISAW problem has been
understood to be a tricritical point in an extended
“phase” diagram. This diagram is often taken as either
the (z,w) plane or the (T,L) plane. It has recently been
shown that it is reasonable to identify a tricritical-like
point in the (z,) plane or singularity diagram. This dia-
gram for the IPDSAW system is given in Fig. 3. We
have verified [6] in the generalized ensemble of the
IPDSAW system that the generating function does
indeed have the crossover form, and we have calculated
the high-temperature exponents and critical exponents.
Now with the added understanding of the low-
temperature radius of convergence line as a line of con-
densationlike (first-order) singularities, we are certainly
able to see the point as tricritical-like. Moreover, there
exist unconfirmed conjectures [3] of the tricritical ex-
ponent values in the ISAW problem. In particular, the
crossover exponent has been the subject of some dispute.
We give a numerical reason why the estimates of that
value may be far from their true values. This involves the
exponent relation 2—a=1/¢, where a is the divergence
index for the canonical specific heat and ¢ is the cross-
over exponent. We reveal that while this relationship
does indeed hold in the thermodynamic limit it is very
slowly asymptotically correct. Corrections to scaling
strongly affect numerical estimates. Hence, the use of the
relation can lead to erroneous results since it is often as-
sumed to strictly hold in finite-length studies.

The paper is divided into three main sections. The first
section presents the model and the method used to gen-
erate the enumeration data. The second section explains
the results of studying the partition function. The warn-
ing concerning the crossover exponent is supported here
with numerical evidence. The scaling at low tempera-
tures leads to the Fisher droplet model extension and the
walk exponents. In the third section the length scales of
the problem are examined and the phenomenological pic-
ture of the collapse transition is revealed.

II. THE METHOD OF ENUMERATION

Here, we describe the model and then present the
method of generating the series enumeration data used in
our analysis.

The configurations of this model are partially directed
walks on a two-dimensional square lattice with nearest-

J

L _ (Fysloy...
0 (x,y,0)=3 x¥ > yL—Np“

N=1 \r1|+lr2|+~~~+|rM:L—N

where we have set o =exp(SJ).

In order to derive an efficient computational scheme
for Q; (x,y,w), it is convenient to consider the partition
functions Z{"=Z\"(x,y,0) for walks of total length
L +1 which start with a vertical segment of height 7,
then

L
QL +1(x,y,0)= 3 zy. ®)
r=—L

PRELLBERG, OWCZAREK, BRAK, AND GUTTMANN 48

0.6
\\ z=1/w

0.5 } .
\Unphysmal region

(0,0.453...)

0.4

Tricritical point,
N (3.382975...,0.295597...)

0.3

fugacity z¢(w)

0.2

Finite size region

I T

T T T
2 3 4 5 6

Temperature variable o

FIG. 3. The singularity diagram for the discrete IPDSAW
model. Important points, including free walks at =1 and the
tricritical collapse point, are shown.

neighbor interactions. For convenience, we demand that
these walks end with a horizontal segment. Due to the
directed nature of this problem, we can describe these
configurations in a natural way through the distance 7;
between two horizontal steps, measured in the positive y
direction (i.e., the length of the vertical segment is |r;|).
Thus, we associate to each configuration an N-tuple
(ry,ry, ..., ry) corresponding to a configuration of total
length L =3M_,|r;|+N.

The energy due to the nearest-neighbor interactions for
each of these configurations is

U(ri,ry, - ory)=—Julr{,ry, ..., ry), (5)

where

N—1
,rN)ZE min(‘ri|,lri+1\)ﬂ('—riri_l), (6)

i=1

u(rl,rz,. ..

with #(x) being the Heaviside step function. We assign
weights x for steps in the horizontal direction and y for
steps in the vertical direction. The canonical partition
function is

V) %)

(In the definition of Z}” we have chosen L +1 instead of
L, as it makes the indexing in the following equations
more transparent.)

We can concatenate these walks to get a recursion rela-
tion for Z{" as follows:

L—r—1
Z{"=xp'" .+ 3 o*("9Z) 9)
s=—L+r+1
for r=—L,...,L and L=0,1,2,... . It is this recur-
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sion relation which enables us to obtain very long series. Note that

o_
) =xQy (x

One can further use the symmetry Z\"=2Z}""

x,y,0)

L—r—1 L—r—1
Zi”=xy 6rL+ 2 Z~r#1+ 2 a)mm(rs)z(s
s =0 s=1

Considering Z,"
trix.
For the computation of the free energy f; (),

(10)

and restrict to » = 0, then

(11)

as a matrix with indices L and r shows that we have to recursively compute rows of a triangular ma-

internal energy u; (), and specific heat ¢; (»), we need to compute

first- and second-order derivatives of Z\”, further denoted by Z ,‘" Jand Z I‘f ). Setting x =y =1 then yields the iteration
scheme
L—r—1 L—r—1 .
Zir): 2 ZI(‘S)—r—1+ 2 wmln(r,s)zl(‘slr_l+8r71‘ s (12)
=0 s=1
L—r—1 L—r—1 .
zZ{= 3 zP, .+ 3 o™rI[ZE)L _ +minr,s)ZP), ], (13)
= s=1
L—r—1 L—r—1
Z}:)z= > ZL_,_12+ > MR Zs) L,—1,2T2min(r, s)ZL_,~H+m1n(rs 2z 1. (14)

s=1

Defining a; (w)=(1/L )]nZ}f)) and recalling v =exp(S8J),

we then have

fL(w)——%aL(w)=—ElL—an£°’ , (15)
d J Z2
uL(w)=JwEaL(w)=IZ£°) , (16)
il pr2 [z\% [z ]
—pr2|.._a _ , ,
cilw)=pBJ wdco a; (o) i3 Z]i) Z,(‘O) } }
(17)

In the computation we rescale the matrix coefficients in
the iteration scheme because they grow exponentially.
As our computations concern the critical point and col-
lapsed phase, this growth is given by w’ 7, so that we ac-
tually store z\” =" ~LZ\".

For the computation of the length-scale exponents, we
take partial derivatives of (11) with respect to x and y and
set up a corresponding iteration scheme. For the compu-
tation of the vertical end-to-end distance it is further
necessary to distinguish between steps in the positive and
negative directions; a straightforward but rather tedious
generalization of (9) similar to (A1) of [6] is required to
accomplish this task.

All the computations have been done using floating-
point numbers with 17-digit precision, some up to
L =6000. Therefore it is necessary to discuss the accura-
cy of these enumerations as opposed to “‘exact” enumera-
tions with symbolic manipulation programs. One ob-
serves that the terms in the sums are positive and de-
crease exponentially fast in @ for ® 2 w,. This implies
that each of these sums is dominated by only a few terms,
and the number of terms contributing to within the
floating-point accuracy is in any case less than 50. There-
fore roundoff errors are negligible and the scheme is nu-

r
merically stable within the given floating-point accuracy.
A comparison with results from exact enumeration data
(computed up to L=160) [23] and computations with
34-digit accuracy (computed up to L =1000) support this
conclusion.

The evaluation of the data involves two different
methods. We compute effective exponent estimates, that
is, assuming that a quantity grows as

fL)y~L* (18)
we define an effective exponent as

Inf(L)—Inf(L—1)
InL —In(L—1)

and treat the resulting series with various series extrapo-
lation methods. Note, in this paper we take f(x)~g(x)
to mean limx_,xof /g =const7#0 (rather than 1). This

avoids the frequent introduction of constants. It turns
out that we can determine the order of the corrections to
scaling quite accurately and can in turn use this informa-
tion in the extrapolations. This method is then quite suc-
cessful and gives rather accurate error estimates.

The second method used in the numerical analysis is
the method of differential approximants [24,25]. This
method confirms our extrapolation results when correc-
tions to scaling are explicitly accounted for. A well-
known problem here is also the quite subjective deter-
mination of error bounds from the various approximants.
However, for shorter series this method gives results
closer to the exact values.

ML)=

(19)

III. RESULTS FOR THE PARTITION FUNCTION

The canonical partition function is expected to have
the following length scaling form at high temperatures:

0, ~utLr 1 (20)
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where f (T)=—kpT Inu(T) and y=y 4 for T>T, and
y=v, for T=T,. As previously mentioned the exponent
v can be extracted from the generating function provided
the form (20) holds. In this section we will be interested
in two topics. First, we will discuss the ease of calculat-
ing exponents when the critical-point crossover occurs
and, second, we will discuss the form of the finite-length
scaling for the partition function at low temperatures
where (20) does not hold.

A. Critical point

Around the critical point the partition function should
have the crossover scaling form [11], which is closely re-
lated to a tricritical scaling form (as mentioned in the In-
troduction),

0L (@)~ [y () EL" " 'O(8wL?) , 1)

where Sw=w, —w, 4,(w) is the analytic part of u, and

xV/¢_(vy—v,)/¢

o(x)~ F+ * ’
1, x—O0,

X — o0

(22)

where p, is related to the singular part of the free ener-
gy.

The canonical specific heat C; (w) should also have a
crossover scaling form

e (0)~L*Q(8wL?) , (23)
where
x % x—>o0
Qx)~ ’
71, x—0. (24)

It has been shown [11] under some general assump-
tions that the exponent relation

2—a=1/¢ (25)

should hold. Even though there exists an exact solution
in the generalized ensemble, we have used series analysis
to find estimates of the values of the two exponents a and
¢ from canonical finite-length data in an attempt to
evaluate the numerical precision of the series analysis.
As an aside we have verified that the canonical exponent
v, has indeed the same value as the exact generalized
canonical answer.

Our computation of these exponents is greatly aided by
the fact that we know the critical temperature and the
free energy at the critical point exactly. Therefore, we
can compute the exponents from

O (o )o t~L" T, (26)
l—uy(w,)/J~L 1729 27
cilw,)~L% . (28)

In Figs. 4 and 5 we plot the effective exponents for «,
¢, and a+1/¢. One can immediately see that the “true”
values of these quantities, being 1, 2, and 2, are only
slowly reached. This presents a warning in the wider
field of walk problems at a collapse transition when extra-
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FIG. 4. Estimates for the exponents a and ¢ at the collapse
transition are plotted against a corrections-to-scaling term of
L~ for L up to 2000. The exact values are 1 and 2, respec-
tively. This plot shows that the series are only slowly conver-
gent.

polating finite-length data, a topic which has been dis-
cussed in some detail elsewhere [11].

We further analyze these data using two techniques.
First, from the figures we see that the correction terms
are of order L ~!/3; therefore we also extrapolate towards
L = by fitting to an expansion in powers of L ~!/3 and
get good results. Second, second- and third-order inho-
mogeneous differential approximants are used, with the
critical point biased at 1, and we also checked for
confluent exponents. We utilized 100 terms each, so that
for the 2000-term series only every 20th term was used.
The range of the approximants was [23-25,
23-25,23-25;20-25] for the second-order approximants
and [19-20,19-20,19-20,19-20;13-17] for the third-
order ones. We summarize the results in Table 1.

Clearly the extrapolation of the exponents from the
2000-term series with an assumed correction term is most
successful. We point out that a similar analysis for the
100-term series does not yield any meaningful results,

2.00
1.95-
1.90
©
—
— 1.85|
+
3
1.80
1.75
1.70 1 1 1 1 | I
0.00 0.05 0.10 0.15 0.20 0.25 0.30

L~l/3

FIG. 5. To demonstrate the slow asymptotic truth of the re-
lation 2—a=1/¢ a plot of a+1/¢ is shown. The leftmost
point corresponds to L =2000.
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TABLE I. Numerical estimations for y,, @, and ¢. The differential approximant estimates shown for
a¢ and (a—1)¢ correspond to two techniques: In the first row are the results from a simple differential
approximant analysis, while the second and third row show the exponent and confluent exponent, re-
spectively (from a confluent singularity analysis). The values shown for a and ¢ are derived from the
simple differential approximant analysis for the short series and from the confluent singularity analysis

for the long series.

Differential approximants

L =100 L <2000 Extrapolation Exact
2nd order 3rd order 2nd order 3rd order L <2000 results
Y. 0.3354(2) 0.3356(1) 0.33348(1) 0.33348(1) 0.3333(1) 1/3
ad 0.47(2) 0.43(2) 0.374(1) 0.377(3) 0.3333(1) 1/3
0.42(6) 0.41(6) 0.33(3) 0.329(1)
not detectable 0.08(3) 0.06(1)
(a—1)¢ —0.302(1) —0.304(1) —0.33(2) —0.3242(2) —0.3333(1) —1/3
—0.31(3) —0.31(1) —0.333(2) —0.3333(2)
not detectable —0.61(5) —0.66(1)
a 0.61(3) 0.59(3) 0.50(5) 0.497(2) 0.5000(1) 1/2
¢ 0.77(2) 0.73(2) 0.66(3) 0.662(1) 0.6667(1) 2/3
at+1/¢ 1.91(5) 1.96(5) 2.0(1) 2.008(3) 2.0000(2) 2

even if the right correction term is assumed. This ties in
with the differential approximant analysis which does not
indicate any confluent exponent.

If we only had the short series, ¥, would thus have
been the only correctly estimated exponent. Strong
corrections to scaling make the estimations of a and ¢
quite problematic and even the ‘“‘correct” guess of the
leading correction term does not improve this. We add
that in general such a guess from shorter series is highly
dangerous and can even result in a “self-fulfilling prophe-

E3]

cy.

The most important feature in this table is perhaps
that the differential approximant method, even if applied
to a rather “long” series of 100 terms when compared to
its usual applications, gives wrong results in the sense that
even within quite a conservative error estimation the true
value is outside that range. A good check for this is here
relation (25), which is not satisfied by these 100-term ex-
trapolated exponent values.

Applied to the 2000-term series, on the other hand, the
differential approximant method gives a good indication
of the existence of the confluent exponent and also gives
exponent estimates consistent with (25). However, when
compared to the direct extrapolation, one sees that the
error is still rather large.

Only with a direct extrapolation with an a priori guess
of the right correction terms (which by virtue of the con-
sistent result suggests it is itself correct a posteriori) can
the exponent values be extrapolated to a satisfactory ac-
curacy. As these values satisfy the relation (25) and the
differential approximant analysis gives consistent results,
this analysis can be trusted.

In summary, we caution again that one can really only
have confidence in asymptotic analysis when several
methods agree, especially if one does not have any
specific information about the form that one is fitting to.
Otherwise one is too easily tempted to believe in possibly
misleading error bounds.

Furthermore, if we did not know the exact location of

the critical point along with the free energy and internal
energy, we would have to resort to the usual procedure of
determining the exponents from the scaling of the peak of
the specific heat. The results [23] using 100-term series
are a=1.30(5) and ¢=0.45(3), with rather subjective er-
ror bounds. Since the exact values are + and %, respec-
tively, clearly this method is unsatisfactory. The prob-
lems with this last approach are probably due to the
strong asymmetry of the collapse transition.

We have calculated the scaling functions ©(x) and
Q(x) (see Figs. 6 and 7). These support the crossover
scaling theory in the canonical ensemble. One can see
also both the asymmetry of the scaling function and the
size of the region of validity of the scaling function from
these diagrams. The high-temperature side converges
very slowly and this reinforces the remarks above and
elsewhere [11] concerning the care that must be taken in
analyzing finite-length data at collapse transitions.

O(x)

50

50 I | 1
-100 -50 0 50 100

FIG. 6. Estimates for the scaling function ©(x) of the parti-
tion function (up to a constant) are shown for lengths L =250,
500, 1000, 2000, 4000.
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FIG. 7. Estimates for the scaling function Q(x) of the
specific heat (up to a constant) are shown for lengths L =250,
500, 1000, 2000, 4000.

B. Collapsed phase

The scaling form (20) is the expected scaling form for
the partition function in a wide range of walk or polygon
models and hence polymer systems. This form induces a
divergence in the generating function (see above) as one
approaches the radius of convergence from below. From
the exact solution [5,6] it is clear that the generating
function converges at its radius of convergence indicating
an essential singularity of some type.

Previous work by Fisher [13] on the condensation of a
fluid system can be adapted to this problem in the follow-
ing way. We have conjectured that the scaling form

01 ~ Lol @) ()= LT~

> (29)
where o =1, is the appropriate asymptotic scaling in the
ccllapsed region for general SAW-type problems [10].
We have learned that recent work by Grassberger and
Hegger strongly supports our claim for three-dimensional
isotropic polymers [26]. Here we shall present evidence
to support this claim. We shall also consider the conse-
quences for the critical-point crossover scaling. This will
introduce a further critical exponent Y, thereby extending
Fisher’s discussion.

From the exact solution [5,6] we know already that
uolw)=w. For the estimation of o, we first compute an
effective exponent o (L) from

In[Q; (w)w L]~L° (30)
at o—w.=1,2,...,64 for L =6000 in the collapsed
phase. A plot against L ~!/2 (Fig. 8) suggests that in fact

asymptotically o =1 in the collapsed regime. Using
differential approximants on In[Q; (w)w L], we confirm
this by the estimate o =0.495(6).

Assuming o =1, we now proceed with an estimation of
Y- —1. We compute estimates from a two-parameter fit

to
In[Q; (@)™ E)~Inp,LY?*+(y _—1)InL . (31)

The result is shown in Fig. 9 and again we see conver-
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50x10™°

-1/2
L

FIG. 8. Estimates for the exponent o plotted against a
corrections-to-scaling term, for a range of temperatures, for L
up to 6000. The “temperatures” are, from top to bottom,
w=0,1+64.0, 32.0, 16.0, 8.0, 4.0, 2.0, 1.0.

gence to a value of about 0.75 over a wide range of tem-
peratures in the collapsed region. We remark that due to
pathological behavior of the zero-temperature state, these
computations need to be done with series whose lengths
are well above 100 in order to overcome this pathological
behavior.

Extrapolation of estimates of ¥ _ by fitting successively
to

In[Q; (0o L]~Inu,LV?+(y _—1)InL

n
+3 a,L7"? (32)
i=0
results in a very accurate determination of p(w) and a
value of ¥ _=0.250000(5), which by its accuracy is an
indirect confirmation of o =1. The direct estimation of
o is less accurate because the differential approximants
cannot account for either ,uLa asymptotic behavior or,

-0.76 |-

v-1

-0.80 1 1 I 1
10 20 30 40

50x10™°

FIG. 9. Estimates for the exponent y_—1, computed by
fitting the calculated partition function to the full form (29) for
L up to 6000. Again these cover the same range of temperatures
as in Fig. 8 from top to bottom (on the left-hand side). Fitting
these curves with third- and fourth-order polynomials in L ~!/2
produces remarkably stable results.
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upon taking the logarithm, for the (InL)-correction term.

Of further interest is the crossover that occurs as
wo—w,.. A crossover scaling form for the collapsed re-
gion is again given by

0L(0)~[pa(@)]*L7 " 'O(8QL?) (33)
(where now dw=w,—w<0) and comparison with (29)

implies that

1/¢ o/ ((y_—v, )/
Ix] ISXf x| ¢

ex)~ i #
1, x—0.

y, X—>—

(34)

This, together with (21), describes the complete crossover
scaling form as outlined in [11]. [In our model, we have
an even slightly simpler scaling form due to u,(w)=w
and p_ =1 in the collapsed phase.]

To test this scaling form, we note that as a consequence
we have asymptotically
[8w|X

(@) ~plol with x=%=% , (35)
so that the independent computation of the exponent Y
can serve as a verification. In order to check its predicted
value, we compute u(w) for w—w,. We fit again using
(31), but now with y _ specified. Naturally this extrapola-
tion gets worse when we approach ., as we have to ex-
trapolate into the crossover regime itself. The results are
shown in Fig. 10, and one can see that the error increases
as the critical point is approached. Clearly the numerical
results are compatible with a slope of y=3.

We conclude this section with a summary of the ex-
ponent values in the collapsed phase:

o=1 Y-=h X=%. (36)

IV. RESULTS FOR THE LENGTH SCALES

The examination of the “size” of the objects is a cen-
tral task of the analysis of walk models. We present re-
sults on the end-to-end displacements of the walks as

My

FIG. 10. To provide an estimate for the exponent ¥, a log-log
plot of p; is given against the “temperature” difference to the
critical point (0w —w,.). A 6000-term series was used to calculate
1. The straight line has slope 2.
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FIG. 11. The high-temperature (w=1.0) length-scale ex-

ponents can be estimated from this plot of v, v;, and v,. The
corrections should be of order L ~! (from the exact solution) and
so we use this as the variable against which we plot. A 600-term
series was used here because of the greater complexity of the
series needed to calculate length-scale exponents.

functions of length and temperature and in the following
subsection provide a simple phenomenological picture
and scaling theory to explain the results.

The quantities of initial interest are the average hor-
izontal (R,) and vertical (R,) end-to-end displace-
ments:

(R,,)= X

configurations

R, e ,(No'/Q; . (37)

These provide some measure of the global size of the
walks. Note that, for any walk, R, is simply equal to the
number of horizontal steps L, while this correspondence
does not hold for R,. One can compute the correspond-
ing generalized canonical averages by introducing three
fugacities into the generating function associated with the
horizontal steps and with the vertical steps from folds
that move in the positive and negative (a different fugaci-
ty) y directions (as one moves along the walk in the posi-

0.9
Critical point

Vi

ViV Vi

0.2 T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

FIG. 12. The critical-temperature (0=23.382975. . .) length-
scale exponents can be estimated from this plot of v, v, and v,,.
Here the corrections to scaling should be of order L ™13, A
600-term series was used.
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FIG. 13. The low-temperature (w=6.0) length-scale ex-
ponents can be estimated from this plot of v, v;, and v;,. Here
the corrections to scaling should be of order L ~!/2. A 600-term
series was used.

tive x direction) [6]. However, as previously stressed, the
low-temperature results are not useful since the general-
ized canonical averages converge at the radius of conver-
gence of the generatmg function.

Also of interest is the average length of each vertical
fold. This will give a measure of the local size and is
defined as

(hy= 3 [Ehi/Lx]cL(I)mI/QL, (38)

configurations i

where i labels the folds of an individual walk and ;= |r;|.
As L — « the size of the walks becomes large and the
end-to-end displacements are expected to scale as

(R, )~L"™ . (39)
We define also v, by
(hy~L™ . (40)

Utilizing the recurrence relations, we have calculated
effective exponents for (R, ,) and (k) as functions of L
from series up to L =600. The reason for these much
shorter series is that the amount of computer memory
needed to keep track of the geometric information is nat-
urally much larger than for the computation of the gen-
erating function alone. The results are shown in Figs. 11,
12, and 13.

As above, estimates of the exponents at high, critical,
and low temperatures, are shown in Table II. The es-
timation of the numerical values again used differential
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Collapsed phase

-FI--

[~ center-of-mass walk

FIG. 14. A npicture showing the dominant type of
configurations at low temperature; these being described as bub-
blelike.

approximants as well as an extrapolation procedure with
an assumed correction-to-scaling form. The assumed
corrections to scaling were integer powers of L ~! in the
extended phase, L ~!/3 at the critical point, and L ~'/2 in
the collapsed phase. The high- and critical-temperature
exponents agree, as expected, with the exact calculation
[6] and have been confirmed by clever scaling arguments
[27].

The results for T'> T, converge quite fast to the exact
results of v, =1, vy=%, and v, =0, with the anticipated
correction to scaling of L ~!. This allows us to visualize
the dominant walk configurations in the extended phase
as elongated. They are effectively free partially directed
random walks with a finite local fold length. For a later
comparison we mention that here the square of the verti-
cal radius of gyration scales in the same way as the
square of the vertical end-to-end distance.

At T, the estimates converge at a greatly reduced rate
to the exact values of v, =2, vy, =1, and v, =1, while the
theoretical correction term L ~!/3 has a much stronger
effect. The predominant walks are now those in which
the local length is as large as the overall size. So the ra-
dius of gyration, the end-to-end distance and the local
size all scale together.

Most curious, at first, are the low-temperature results
which are precisely the ones that have not been found ex-
actly. Conventional wisdom would suggest that the
walks collapse to compact objects and so any radius of
gyration would scale as the length to the exponent 1/d,
where d is the lattice dimension. This view also dictates
that it does not matter which length scale one chooses to
measure (the actual radius of gyration or the end-to-end
distance) as the same exponent should appear. We have

TABLE II. End-to-end displacement and average fold length exponents.

Ve vy Vi
Temperature numerical exact numerical exact numerical exact
T>T, 1.00000(1) 1 0.50000(1) 172 0.00000(1) 0
T. 0.6668(2) 2/3 0.3338(5) 1/3 0.334(2) 1/3

T<T, 0.501(1)

0.251(1)

0.502(2)
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Extended phase

FIG. 15. A picture showing the dominant type of
configurations at high temperatures for comparison. Finite-size
droplets form up to the size of the thermal correlation length

Ex-

found strong evidence that the vertical end-to-end dis-
placement exponent is in fact not 1 but +. However, with
some simple arguments one can show that the global size
of the object in the vertical direction must scale with an
exponent of at least 5. The average local size (that is, the
fold length) certainly seems to scale with the exponent 1,
and the global size must be as large as the local one. In
the next section we explain these intriguing results.

Scaling theory

The key to understanding these results is to understand
that the dominant configurations at low temperatures are
droplet or bubblelike. In fact one can view the collapse
transition as a fluid condensation transition by placing
‘“particles” on the dual lattice wherever there exist
monomer-monomer interactions. Then at high tempera-
tures we have an infinite string of finite droplets (see Fig.
15) while at low temperatures a single infinite drop exists
(see Fig. 14).

As the results stand, one feature that is immediately
clear is that the relationship

v =2, (41)

always holds. This leads us to the idea that the center of
mass of the configurations at any temperature acts like a
free partially directed walk. The other ingredient needed
to make sense of the 4 value for v, is the following. Let
h; be the height of the ith fold in a configuration and
(h;) be the average height over walks of length L. If we
let i and L, —i simultaneously be proportional to L, then
we can safely assume that (h;)~L 172 However, if
L then we should have v,<1 where (h Lx>

‘VyZ; — 7

=(h,)~L"". We have estimated the value of v, (Fig.
16) and found that it is in fact close to zero. We conjec-

Collapsed phase

Vi
°
&
T

1
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

FIG. 16. The growth exponent for the length of the first seg-
ment &, denoted by v, is plotted here against L ~!/2. It clearly
converges to a value less than % and probably converges to zero.

ture that it is in fact zero (although we do not comment
on whether (k,) is finite in the thermodynamic limit).
We then see that the dominant configurations are bubble-
like, rather than, say, square as one might also expect.

We may introduce a shape scaling form for the bubble
as

(h;Y~L™H(L ™), (42)
where
H(x)~x "0 43)

for x —0. The exponent p=(v, —v;)/v, is a shape ex-
ponent describing the shape of the ends of the bubble. In
this case v, =0 so p=1 giving a locally linear shape.

To summarize, since the number of ‘“‘center-of-mass™
steps, which is of the order of L!/2, perform a partially
directed walk this “‘center-of-mass> walk has an average
vertical displacement of the order of L!/4, Given that
the length of the first and last segments scale with powers
less than —}, then the total vertical end-to-end displace-
ment scales as L'/ Hence this does not contradict the
fact that the global vertical size of the walks scales with
the power 1, as the walks form bubble-shaped objects on

average.
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